Maths at

Almond Hill Junior School 2023-2024

Subject Intent Statement

The National Curriculum for Maths aims to ensure that all children:

- Become fluent in the fundamentals of Mathematics
- Are able to reason mathematically
- Can solve problems by applying their Mathematics to a variety of routine and non-routine problems, with increasing sophistication.

At Almond Hill, we want our pupils to understand that maths is an interconnected subject and to give them the skills to be able to solve problems they may face in the real world. They should also apply their mathematical knowledge to science and other subjects.

Implementation

Groupings

- Children working at all levels should be challenged appropriately, with no ceiling on their learning. At Almond Hill children learn through mixed ability, whole class teaching.
- Children working at greater depth will be offered rich and sophisticated problems in the subject area before accelerating through new content.
- All children will be taught to use reasoning skills in all lessons, through use of a specific problem-solving tool (RUCSAC - see learning environment). Use of this will be modelled for the children on a regular basis.
- Children with SEND may also be supported outside of the maths lesson in a $1: 1$ or small group provision, depending on level of need. This provision is planned by the teacher or a specialist maths learning advisor and delivered with the child's specific targets in mind by either the class teacher, a pupil progress achievement mentor (PPAM) or an inclusion Teaching Assistant.
- Some year 6 children will be offered additional maths via 'booster-sessions' in preparation for SATs. Class teachers will discuss this with parents of children who this refers to.

Timings

- Maths is taught for 5 hours per week (core maths lessons). In addition to this, fluency sessions are taught for 15 minutes three times weekly alongside specific multiplication learning sessions, also taught for 15 minutes three times weekly.
- Children are expected to practise their times tables regularly using the TT Rockstars website at home. They should be given additional opportunities to access these resources within school hours if access is not available at home. Tournaments and battles are set by class teachers to encourage use of this tool.

Planning

- Teachers follow the Herts for Learning Essentials Long Term Plan and use the Essentials Planning Tools for the individual units of work. They are able to use these resources to 'track back' to earlier year-groups or units of work if necessary.
- These plans can be supplemented with activities from White Rose, NCETM, NRich, Testbase, 'Maths.co.uk' and HfL 'Practice sheets' which offer further rehearsal examples linked to core learning sequences.

Learning Environment

- Every classroom has a working wall which is used to display material relevant to the day's learning. Children can access vocabulary and support tools through the working wall in order to break into problems independently.
- Displayed on or around the working wall is a display to assist children in solving reasoning / word problems, called 'RUCSAC'. These will be referred to most lessons and children will be guided through the process on a regular basis.
- Bar models are 'regular practice' for children in learning and are an embedded part of maths lessons - interlinked with the RUCSAC process
- Manipulatives are easily accessible in all classrooms and children are encouraged to use these as and when necessary.
- Children may be work independently, in a group guided by the teacher or with a partner. Sometimes, activities may be devised where children work in a small group, taking on different leadership roles within the group.
- Visualisers will be used to share good practice or share examples of 'Marvellous Mistakes' where a teacher can address common misconceptions and move learning forward.

Implementation - Year 3 Programme of Study, Statutory Requirements

Implementation - Year 3 Programme of Study, Non-statutory Requirements

Number and place value
 Pupils now use multiples of $2,3,4,5,8,10,50$

 and 100 .They use larger numbers to at least 1000, applying partitioning related to place value using varied and increasingly complex problems building on work in year 2 (for example, $146=$
100 and 40 and $6,146=$
130 and 16).
Using a variety of representations, including those related to measure, pupils continue to count in ones, tens and hundreds, so that they become fluent in the order and place value of numbers to 1000.

Addition and subtraction

Pupils practise solving varied addition and subtraction questions. For mental calculations with two-digit numbers, the answers could exceed 100.

Pupils use their understanding of place value and partitioning, and practise using columnar addition and subtraction with increasingly large numbers up to three digits to become fluent (see Appendix 1).

Multiplication and division
Pupils continue to practise their mental recall of multiplication tables when they are calculating mathematical statements in order to improve fluency. Through doubling, they connect the 2,4 and 8 multiplication tables.

Pupils develop efficient mental methods, for example, using commutativity and associativity (for example, $4 \times 12 \times 5=4 \times 5 \times$ $12=20 \times 12=240$) and multiplication and division facts (for example, using $3 \times 2=6,6 \div 3$ $=2$ and $2=6 \div 3)$ to derive related facts ($30 \times 2=60,60 \div 3=20$ and $20=60 \div 3$)

Pupils develop reliable written methods for multiplication and division, starting with calculations of two-digit numbers by one-digit numbers and progressing to the formal written methods of short multiplication and division.

Pupils solve simple problems in contexts, deciding which of the four operations to use and why. These include measuring and scaling contexts, (for example, four times as high, eight times as long etc.) and correspondence problems in which m objects are connected to n objects (for example, 3 hats and 4 coats, how
Fractions

Pupils connect tenths to place value, decimal measures and to division by 10 .

They begin to understand unit and nonunit fractions as numbers on the number line, and deduce relations between them, such as size and equivalence. They should go beyond the [0,1] interval, including relating this to measure.

Pupils understand the relation between unit fractions as operators (fractions of), and division by integers.

They continue to recognise fractions in the context of parts of a whole, numbers, measurements, a shape, and unit fractions as a division of a quantity.

Pupils practise adding and subtracting fractions with the same denominator through a variety of increasingly complex problems to improve fluency.

Pupils continue to measure using the appropriate tools and units, progressing to using a wider range of measures, including comparing and using mixed units (for example, 1 kg and 200g) and simple equivalents of mixed units (for example, $5 \mathrm{~m}=500 \mathrm{~cm}$).

The comparison of measures should also include simple scaling by integers (for example, a given quantity or measure is twice as long or five times as high) and this connects to multiplication.

Pupils continue to become fluent in recognising the value of coins, by adding and subtracting amounts, including mixed units, and giving change using manageable amounts. They record $£$ and p separately. The decimal recording of money is introduced formally in year 4.

Pupils use both analogue and digital 12-hour clocks and record their times. In this way they become fluent in and prepared for

Geome shapes

Pupils' knowledge of the properties of shapes is extended at this stage to symmetrical and nonsymmetrical polygons and polyhedra.

Pupils extend their use of the properties of shapes They should be able to describe the properties of 2-D and 3-D shapes using accurate language, including lengths of lines and acute and obtuse for angles greater or lesser than a right angle.

Pupils connect decimals and rounding to drawing and measuring straight lines in centimetres, in a variety of contexts

Statistics
Pupils understand and use simple scales (for example, 2, 5, 10 units per cm) in pictograms and bar charts with increasing accuracy.

They continue to interpret data presented in many contexts.

| | | many different outfits?; 12 sweets
 shared equally between 4 children:
 4 cakes shared equally between 8
 children). | using digital 24-hour
 clocks in year 4. | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Implementation - Year 4 Programme of Study, Statutory Requirements

Number and place value
Pupils should be taught
to:
[Dcount in multiples of
$6,7,9,25$ and 1000

unfind 1000 more or less than a given number
Ulount backwards through zero to include negative numbers
Drecognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)
Morder and compare numbers beyond 1000
Didentify, represent and estimate numbers using different representations
DIround any number to the nearest 10,100 or 1000
Usolve number and practical problems
Addition and
subtraction
Pupils should be

Pupils should be taught to:

- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
- estimate and use inverse operations to check answers to a calculation
- solve addition and subtraction twostep problems in contexts, deciding which operations and methods to use and why

Multiplication and
division

Pupils should be taught to:

UCrecall multiplication and division facts for multiplication tables up to $12 \times$ 12
Duse place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1 ; multiplying together three numbers
OMrecognise and use factor pairs and commutativity in mental calculations
Dmultiply two-digit and three-digit numbers by a onedigit number using formal written layout
Unsolve problems involving multiplying and

Fractions (including decimals)
Pupils should be taught to:
Urecognise and show, using diagrams, families of common equivalent fractions
OLcount up and down in hundredths; recognise that hundredths arise when dividing an object by a hundred and dividing tenths by ten.
प्यsolve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number
[ladd and subtract fractions with the same denominator
पrecognise and write decimal equivalents of any number of tenths or hundredths
Urecognise and write decimal equivalents to $/ /_{4} ;{ }_{2} /_{2}{ }^{3} / 4$

- find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths
Measurement
Pupils should be
taught to:
[Convert between different units of measure [for example, kilometre to metre; hour to minute]
[Imeasure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres
पufind the area of rectilinear shapes by counting squares Destimate, compare and calculate different measures, including money in pounds and pence
IOread, write and convert time between analogue

Geometry:

 properties of shapesPupils should be taught to:

DCompare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes
DDidentify acute and obtuse angles and compare and order angles up to two right angles by size
DIDentify lines of symmetry in 2-D shapes presented in different orientations
[Dcomplete a simple symmetric
Geometry:
position and
direction
Pupils should
taught to:
[1describe positions on a 2-D grid as coordinates in
the first quadrant
7ldescribe movements between positions as translations of a given unit
to the
left/right and up/down
[Iplot specified points and draw sides to complete a given polygon

Statistics
Pupils should be taught to:

Winterpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs
[Usolve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs

Implementation - Year 4 Programme of Study, Non-statutory Requirements

		increasingly harder numbers. This should include correspondence questions such as the numbers of choices of a meal on a menu, or three cakes shared equally between 10 children.	They practise counting using simple fractions and decimal fractions, both forwards and backwards. Pupils learn decimal notation and the language associated with it, including in the context of measurements. They make comparisons and order decimal amounts and quantities that are expressed to the same number of decimal places. They should be able to represent numbers with one or two decimal places in several ways, such as on number lines.	symmetry; and recognise line symmetry in a variety of diagrams, including where the line of symmetry does not dissect the original shape.	

Implementation - Year 5 Programme of Study, Statutory Requirements

$\left.$| Number and
 place value | Addition and
 subtraction |
| :--- | :--- |
| Pupils should be | |
| taught to: | |\quad| Pupils should |
| :--- |
| be taught to: | \right\rvert\,

Multiplication and division Pupils should be taught to: ZDidentify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.唯now and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers IDestablish whether a number up to 100 is prime and recall prime numbers up to 19 IOmultiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers

Winterpre \dagger negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero DIround any number up to 1000000 to the nearest 10 , 100, 1000, 10 000 and 100 000 पlsolve number problems and practical problems that involve all of the above 0 read Roman numerals to 1000 (M) and recognise years written in Roman numerals	increasingly large numbers [luse rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy [Dsolve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	IImultiply and divide numbers mentally drawing upon known facts - divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context - multiply and divide whole numbers and those involving decimals by 10,100 and 1000 - recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$) - solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes - solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign - solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	[Iadd and subtract fractions with the same denominator and multiples of the same number DImultiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams IIread and write decimal numbers as fractions [for example, 0.71 $={ }^{71} / 100$] ITrecognise and use thousandths and relate them to tenths, hundredths and decimal equivalents पrround decimals with two decimal places to the nearest whole number and to one decimal place \#Cread, write, order and compare numbers with up to three decimal places पlasolve problems involving number up to three decimal places Trrecognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with denominator 100, and as a decimal Usolve problems which require knowing percentage and decimal equivalents of ${ }^{1} / 2^{\prime}{ }^{1} /_{4^{\prime}}{ }^{1} / 5_{5^{\prime}}{ }^{\prime} /_{5^{\prime}}{ }^{4} /_{5}$ and those with a denominator of a multiple of 10 or 25	perimeter of composite rectilinear shapes in centimetres and metres UCalculate and compare the area of rectangles (including squares) using standard units, square centimetres (cm^{2}) and square metres (m^{2}) and estimate the area of irregular shapes [Destimate volume [for example, using 1 cm^{3} blocks to build cuboids(including cubes)] and capacity[for example, using water] प्यsolve problems involving converting between units of time THuse all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation including scaling	प[draw given angles, and measure them in degrees (${ }^{\circ}$) Didentify: - angles at a point and one whole turn (total 360°) - angles at a point on a straight line and $\frac{1}{2}$ a turn (total 180°) - other multiples of 90° - use the properties of rectangles to deduce related facts and find missing lengths and angles - distinguis h between regular and irregular polygons based on reasoning about equal sides and angles	the appropria te language, and know that the shape has not changed	informati on in tables, including timetable s

Implementation - Year 5 Programme of Study, Non-statutory Requirements

words (for example, add $\frac{1}{2}$).		by powers of a 1000 in converting between units such as kilometres and metres. Distributivity can be expressed as $a(b+c)=a b+$ ac. They understand the terms factor, multiple and prime, square and cube numbers and use them to construct equivalence statements (for example, $4 \times 35=2 \times 2 \times 35$; $3 \times 270=3 \times 3 \times 9 \times 10=9^{2} \times$ 10). Pupils use and explain the equals sign to indicate equivalence, including in missing number problems (for example, $13+24=12+25 ; 33$ $=5 \times \square$).	checking the reasonableness of their answers to problems. They mentally add and subtract tenths, and one-digit whole numbers and tenths. They practise adding and subtracting decimals, including a mix of whole numbers and decimals, decimals with different numbers of decimal places, and complements of 1 (for example, $0.83+0.17=1$). Pupils should go beyond the measurement and money models of decimals, for example, by solving puzzles involving decimals. Pupils should make connections between percentages, fractions and decimals (for example, 100% represents a whole quantity and 1% is $1 / 100,50 \%$ is $50 / 100,25 \%$ is $25 / 100$) and relate this to finding 'fractions of'.	Pupils use all four operations in problems involving time and money, including conversions (for example, days to weeks, expressing the answer as weeks and days).

Pupils use angle sum facts and other properties to make deductions about missing angles and relate these to missing number problems.

Implementation - Year 6 Programme of Study, Statutory Requirements

that involve all of the above	multiples and prime numbers - use their knowledge of the order of operations to carry out calculations involving the four operations - solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why - solve problems involving addition, subtraction, multiplication and division - use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy	- recall and use equivalences between simple fractions, decimals and percentages, including in different contexts	[Isolve problems involving unequal sharing and grouping using knowledge of fractions and multiples	use formulae for area and volume of shapes IIcalculate the area of parallelograms and triangles ICcalculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm ${ }^{3}$) and cubic metres (m^{3}), and extending to other units [for example mm^{3} and km^{3}]	e and know that the diameter is twice the radius ODrecognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles		

Implementation - Year 6 Programme of Study, Non-statutory Requirements

Topics/Units Across the Key Stage

	Autumn	Spring	Summer
Year 3	- Place Value and Regrouping - Counting on and back in Ones, Tens and Hundreds - Estimation, Magnitude and Rounding - number and measures - Addition and Subtraction - mental and written methods, including word problems. - Angles and Right Angles - Perpendicular, parallel, horizontal and vertical lines. - 2D shape - Statistics - Bar charts and tables. - Perimeter	- Multiplication and division using times tables knowledge, including worded problems. - Statistics - pictograms and bar charts - Fractions - Finding fractions of quantities - Ordering and comparing fractions - Adding and subtracting fractions with same denominator - Problem solving with fractions	- Multiplication and division - Sharing and grouping - Formal methods - Time - Telling the time, analogue and digital - Calculating the duration of time - Place value and decimals - Multiplying and dividing by 10 - Regrouping - Measures - measuring and problem solving - Properties of 3D shape
- Across the whole year, children will learn and rehearse times tables facts for 2, 3, 4, 5, 8 and 10 times tables, using a range of methods including TT Rockstars in school and at home. - Problem solving and reasoning will be taught in all areas of the maths curriculum, following the school's RUCSAC procedure.			

- Across the whole year, children will learn and rehearse times tables facts learned in Year 3 plus $6,7,9,11$ and 12 times tables, using a range of methods including TT Rockstars in school and at home.
- Problem solving and reasoning will be taught in all areas of the maths curriculum, following the school's RUCSAC procedure.

Year

- Place value and rounding of large numbers and decimal numbers (3 decimal places)
- Interpreting negative numbers
- Multiplication and Division
- 10, 100 and 1,000
- Prime and composite numbers
- Factors, common factors and multiples
- Addition and Subtraction
- Formal written methods
- Mental strategies
- Fractions
- Equivalent fractions
- Compare and order fractions
- Fractions
- Multiplying fractions by whole numbers
- Problem solving with fractions
- Measures
- Converting units of measure
- Area
- Volume and capacity
- Perimeter
- Percentages
- Shape
- Angles
- 3D shape
- Reflection and translation
- Multiplication and Division
- Formal methods
- Mental methods
- Measures - Imperial and Metric units
- Fractions, Decimals and Percentages problem solving
- Time -reading timetables, calculating time.
- Shape
- Regular and irregular polygons
- Properties of rectangles
- Statistics
- Line graphs

- Adding and subtracting fractions.

```
- Interpreting and evaluating information
in charts and tables
- Roman Numerals
```

- Across the whole year, children will continue to access TT Rockstars to consolidate all times tables and how to use known facts in problem solving situations.
- Problem solving and reasoning will be taught in all areas of the maths curriculum, following the school's RUCSAC procedure.

Year
 6

- Place value
- Problem Solving
- All 4 operations
- Mental calculation strategies
- Fractions, Decimals and Percentages
- Equivalent fractions
- Comparing and ordering fractions
- Adding and subtracting fractions
- Fraction, decimal and percentage equivalents
- Calculating percentages
- Multiplication and Division
- Multiply and divide by 10, 100 and 1,000
- Application of factors, multiples and primes
- Formal written multiplication
- Formal written division
- Area of Parallelograms and triangles
- Properties of Shape
- Algebra
- Long division
- Area and Perimeter
- Angles
- Reflection and translation
- Fractions
- Multiplying fractions
- Dividing fractions
- Problem solving with fractions
- Ratio and Proportion
- Volume
- Measures
- Statistics
- Statistics - mean average
- Application of learning from year

Post SATs:

- Constructing Pie Charts
- Statistical representations
- Further algebra
- Financial Maths and Enterprise
- Preparation for KS3
- Across the whole year, children will continue to access TT Rockstars to consolidate all times tables and how to use known facts in problem solving situations.
- Problem solving and reasoning will be taught in all areas of the maths curriculum, following the school's RUCSAC procedure.

